
ontriBUtion of atmospHEriC CirCUlation to 
rEmarKaBlE EUropEan tEmpEratUrEs of 2011
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W estern Europe witnessed remarkable tempera- 
 ture events during the year 2011. Hot and dry  
 spring and autumn (the warmest and second 

warmest in France, respectively) have contrasted 
with an uneven summer and a cold and snowy 
winter 2010/11 (including cold records over the 
United Kingdom in December 2010). Our scientific 

challenge consists in putting such regional events into 
the context of climate change, either by evaluating 
anthropogenic fingerprints on each event [e.g. with 
calculations of fractions of attributable risk (Stott 
et al. 2004)] and/or by understanding how climate 
change affects physical processes at regional scales. 
The second approach is taken in this paper. In Europe, 
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studies have highlighted that recent temperatures 
have been systematically warmer than expected from 
the North Atlantic dynamics, which controls their 
intraseasonal to interannual variability (e.g., Cattiaux 
et al. 2010b; Vautard and Yiou 2009). Here we inves-
tigate the contribution of large-scale circulations 
to temperatures anomalies of 2011 using the same 
flow-analogue approach as in the analysis of winter 
2009/10 by Cattiaux et al. (2010a, C10 hereafter).

Were 2011 temperatures anomalously warm compared 
to those expected from their flow analogues? We use in 
situ measurements provided by the European Climate 
Assessment dataset at more than 2500 stations over the 
period 1948–2011 (Klein-Tank et al. 2002). Similarly 
to C10, 306 stations are selected on the basis of (i) an 
altitude lower than 800 m, (ii) the availability of more 
than 90% of daily values between 1 January 1948 and 
31 December 2011, and (iii) only one station per 0.5° × 
0.5° latitude/longitude box for spatial homogeneity. We 
compute anomalies relative to 1971–2000 climatologi-
cal standards [mean and standard deviation σ].

Winter 2010/11 was particularly cold in northern 
Europe, falling below –1σ at most of stations above 
50°N (Fig. 10, top). Over western Europe (defined 
by the insert box in Fig. 10), it ranks as the nine-
teenth coldest winter of the whole period 1949–2011 
(Table 1) and the fifth coldest of the last 25 years 

(after 1987, 1996, 2010, and 2006). It was followed by 
exceptionally warm anomalies from March to May 
2011, especially over western Europe where seasonal 
temperatures locally exceeded 2.5σ, making 2011 the 
second hottest spring between 1948 and 2011 (after 
2007). In this region, the temperature rise initiated 
in March climaxed during April, with respectively 25 
of 30 and 14 of 30 days above 1 and 2σ (Fig. 11a). As 
shown in recent studies, dry soils in early summer 
are a necessary, but not sufficient, condition for the 
genesis of heat waves such as those experienced in 
1976 and 2003 (e.g., Vautard et al. 2007).

In 2011, despite important deficits in soil mois-
ture at the end of spring (comparable to those that 
preceded summer 2003 heat waves), summer temper-
atures turned out to be close to normal over most of 
western Europe. With a cool July and a warm spell at 
the end of August, it ranks as the fourteenth warmest 
summer of the period 1948–2011 but the third coolest 
since 2000 (after 2004 and 2005). The rest of the year 
was marked by anomalously mild temperatures over 
all of Europe, punctuated by a few moderate cold 
spells. Seasonal anomalies of autumn 2011 exceeded 
2.5σ in most stations of western Europe, especially 
during September with respectively 17 of 30 and 9 
of 30 days above 1 and 2σ, making 2011 the second 
warmest autumn of 1948–2011 (after 2006). Overall, 
the calendar year 2011 (January to December) is the 

Fig. 10. (top) Observed temperatures of December–February (DJF), March–May (MAM), June–August (JJA), 
and September–November (SON) 2010/11, represented as normalized anomalies (σ levels) relative to 1971–2000 
climatologies at each station. The box over western Europe encompasses the area retained for the regionally 
averaged statistics along the paper (171 stations over 306). (bottom) As at top, but for analog temperatures. 
Observed temperatures are quasi-systematically higher than analog ones, while spatial patterns are well cor-
related (Table 1).
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warmest year over western Europe in our dataset 
(2.1σ, Fig. 11b). However, the hottest 12-month-long 
period remains July 2006–June 2007, which contains 
three seasonal warm records (autumn, winter, and 
spring) and an anomaly that reaches 3.8σ.

The contribution of the large-scale dynamics to 
temperature anomalies of 1948–2011 is estimated from 

the same flow-analogue approach as used in C10. For 
each day, we selected the 10 days with the most cor-
related atmospheric circulation among days of other 
years but within a moving window of 31 calendar 
days (for details, see Lorenz 1969; Yiou et al. 2007). 
The following results are insensitive to (i) the number 
of selected days (here 10) and (ii) the metrics used 

for assessing analogy (here 
Spearman's rank correla-
tion). Further methodologi-
cal details can be found 
in C10 and Vautard and 
Yiou (2009). Circulations 
are derived from sea level 
pressure (SLP) anomalies 
of National Centers for En-
vironmental Prediction 
(NCEP)–National Center 
for Atmospheric Research 
(NCAR) reanalyzes (Kistler 
et al. 2001) and considered 
over the period 1948–2011 
and the area (22.5°–70°N, 
80°W–20°E). The quality 
of flow analogues for 2011 
was checked by verifying 
that mean correlations be-
tween observed and analog 
SLP indicated in Table 1 
were close to the 1948–2010 
mean (not shown).

For all seasons of 2011, 
mean analog temperatures 
(i.e., averaged over the 10 
analog days) were lower 
than observed ones at re-
spectively 76%, 88%, 86%, 
and 89% of western Europe 

Table 1. Normalized anomalies of observed and analog temperatures averaged over western Europe (171 
stations inside the box in Fig. 10), for DJF, MAM, JJA, and SON 2010/11 and the whole year 2011, with 
corresponding rankings in superscripts. Spatial (patterns in Fig. 10), intraseasonal (series in Fig. 11a), and 
interannual (series in Fig. 11b) correlations between observed and analog temperatures are all significant 
at 5%. Flow-analogues quality, as evaluated from mean correlations between observed and analog SLP.

DJF MAM JJA SON Year (J–D)

observed anomaly –0.845 2.42 1.114 2.52 2.11

analog anomaly –1.351 0.912 –0.536 0.515 0.710

spatial correlation 0.5 0.55 0.63 0.72 —

intraseasonal correlation 0.59 0.57 0.44 0.24 0.55

interannual correlation 0.85 0.70 0.60 0.58 0.75

flow-analogues quality 0.72 0.68 0.63 0.67 0.68

Fig. 11. (a) Daily anomalies (°C) of observed (black line) and analog (gray 
spread encompassing the 10 values) temperatures from December 2010 to 
December 2011. Dashed lines indicate climatological σ levels (higher variabil-
ity in winter than in summer), and red (blue) indicates days with observed 
temperatures above (below) the 10 analog values. (b) Yearly observed (black) 
and analog (gray) temperatures averaged over western Europe, represented 
as normalized anomalies relative to the period 1971–2000. Smoothing by 
splines with 4 degrees of freedom is added, and red (blue) indicates years with 
observed temperatures above (below) analog ones. The recent tendency for 
observed temperatures to be warmer than analog temperatures is particu-
larly prominent in both 2010 (cold record in analogues while close to normal in 
observations) and 2011 (warm record in observations while <1σ in analogues).
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stations (Fig. 10, bottom, and Table 1). The persistence 
of a strong negative phase of the North Atlantic Oscil-
lation in December 2010 could have made 2010/11 the 
thirteenth coldest winter since 1948 if large-scale dy-
namics was the sole driver of temperature variations. 
During this particular season the difference between 
observed and analog temperatures peaks over south-
western Europe, suggesting that local processes may 
have inhibited the maintenance of cold anomalies in 
this region. For all other seasons, spatial patterns of 
observed and analog anomalies are better correlated. 
In particular, large-scale circulations contributed to 
both exceptionally warm spring and autumn over 
western Europe, up to respectively ~40% and ~20% of 
observed anomalies. Summer dynamics were rather 
favorable to cold weather over France and Spain, 
thus preventing the development of a potential heat 
wave that dry conditions at the end of spring could 
have nurtured.

At the intraseasonal time scale, observed tem-
peratures of 2011 were 29% of the time above the 
maximum of the 10 analog temperatures, and 77% 
above the median (Fig. 11a). This is significantly high-
er than the expected statistical values, respectively 

1/11 = 9% (2.5–20%) and 1/2 = 50% (35%–65%) 
(brackets indicate 95% confidence intervals obtained 
from binomial quantiles assuming 40 independent 
days among the 396 of Fig. 11a). The heat waves of late 
April, late August, and late September were largely 
underestimated by the analogues, despite relatively 
high correlations between observed and analog SLP 
during these three periods (not shown). Overall, 
the analog temperature of year 2011 reaches 0.7σ, 
suggesting that large-scale circulations contributed 
to ~33% of the observed anomaly (Fig. 11b).

Conclusions. 2011 fits into the pattern of recent years 
where observed temperatures are distinctly warmer 
than analog temperatures. This is true for seasons 
with cold anomalies which are not as cold as expected 
from flow-analogues (e.g., winter 2009/10; see C10) 
and warm seasonal anomalies, that are hotter than 
the corresponding analog seasons (e.g., autumn–
winter 2006/07; see Yiou et al. 2007). In addition, 
high interannual correlations between observed and 
analog temperatures confirm that the North Atlantic 
dynamics remains the main driver of European tem-
perature variability, especially in wintertime.

T 
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